SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zahid M, Chen Y, Khan S, Jamal A, Ijaz M, Ahmed T. Int. J. Environ. Res. Public Health 2020; 17(11): e3937.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph17113937

PMID

32498347

Abstract

Risky and aggressive driving maneuvers are considered a significant indicator for traffic accident occurrence as well as they aggravate their severity. Traffic violations caused by such uncivilized driving behavior is a global issue. Studies in existing literature have used statistical analysis methods to explore key contributing factors toward aggressive driving and traffic violations. However, such methods are unable to capture latent correlations among predictor variables, and they also suffer from low prediction accuracies. This study aimed to comprehensively investigate different traffic violations using spatial analysis and machine learning methods in the city of Luzhou, China. Violations committed by taxi drivers are the focus of the current study since they constitute a significant proportion of total violations reported in the city. Georeferenced violation data for the year 2016 was obtained from the traffic police department. Detailed descriptive analysis is presented to summarize key statistics about various violation types.

RESULTS revealed that over-speeding was the most prevalent violation type observed in the study area. Frequency-based nearest neighborhood cluster methods in Arc map Geographic Information System (GIS) were used to develop hotspot maps for different violation types that are vital for prioritizing and conducting treatment alternatives efficiently. Finally, different machine learning (ML) methods, including decision tree, AdaBoost with a base estimator decision tree, and stack model, were employed to predict and classify each violation type. The proposed methods were compared based on different evaluation metrics like accuracy, F-1 measure, specificity, and log loss. Prediction results demonstrated the adequacy and robustness of proposed machine learning (ML) methods. However, a detailed comparative analysis showed that the stack model outperformed other models in terms of proposed evaluation metrics.


Language: en

Keywords

Aggressive driving; traffic violations; machine learning; Geographic Information System (GIS); hotspot analysis; taxi drivers

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print