SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xu Q, Xu K. Int. J. Environ. Res. Public Health 2020; 17(11): e3790.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph17113790

PMID

unavailable

Abstract

The metallurgical industry is a significant component of the national economy.

The main purpose of this study was to establish a composite risk analysis method for fatal accidents in the metallurgical industry.

We collected 152 fatal accidents in the Chinese metallurgical industry from 2001 to 2018, including 141 major accidents, 10 severe accidents, and 1 extraordinarily severe accident, together resulting in 731 deaths. Different from traffic or chemical industry accidents, most of the accidents in the metallurgical industry are poisoning and asphyxiation accidents, which account for 40% of the total number of fatal accidents. As the original statistical data of fatal accidents in the metallurgical industry have irregular fluctuations, the traditional prediction methods, such as linear or quadratic regression models, cannot be used to predict their future characteristics. To overcome this issue, the grey interval predicting method and the GM(1,1) model of grey system theory are introduced to predict the future characteristics of fatal accidents in the metallurgical industry. Different from a fault tree analysis or event tree analysis, the bow tie model integrates the basic causes, possible consequences, and corresponding safety measures of an accident in a transparent diagram.

In this study, the bow tie model was used to identify the causes and consequences of fatal accidents in the metallurgical industry; then, corresponding safety measures were adopted to reduce the risk.


Language: en

Keywords

fatal accidents; bow tie model; GM(1,1) model; grey interval predicting method; metallurgical industry

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print