SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Perry JJ, Cook GD, Graham E, Meyer CPM, Murphy HT, VanDerWal J. Int. J. Wildland Fire 2020; 29(1): 1-10.

Copyright

(Copyright © 2020, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF19031

PMID

unavailable

Abstract

Australia's northern savannas have among the highest fire frequencies in the world. The climate is monsoonal, with a long, dry season of up to 9 months, during which most fires occur. The Australian Government's Emissions Reduction Fund allows land managers to generate carbon credits by abating the direct emissions of CO2 equivalent gases via prescribed burning that shifts the fire regime from predominantly large, high-intensity late dry season fires to a more benign, early dry season fire regime. However, the Australian savannas are vast and there is significant variation in weather conditions and seasonality, which is likely to result in spatial and temporal variations in the commencement and length of late dry season conditions. Here, we assess the temporal and spatial consistency of the commencement of late dry season conditions, defined as those months that maximise fire size and where the most extreme fire weather conditions exist. The results demonstrate that significant yearly, seasonal and spatial variations in fire size and fire weather conditions exist, both within and between bioregions. The effective start of late dry season conditions, as defined by those months that maximise fire size and where the most extreme fire weather variables exist, is variable across the savannas.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print