SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Makridis M, Mattas K, Ciuffo B, Re F, Kriston A, Minarini F, Rognelund G. Transp. Res. Rec. 2020; 2674(4): 471-484.

Copyright

(Copyright © 2020, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198120911047

PMID

unavailable

Abstract

Adaptive cruise control (ACC) systems are standard equipment in many commercially available vehicles. They are considered the first step of automation, and their market penetration rate is expected to rise, along with the interest of researchers worldwide to assess their impact in relation to traffic flow and stability. These properties are currently discussed mainly through microsimulation studies and empirical observations, with the first being the most common. Experimental observations can draw safer conclusions about the behavior of such systems, but the literature is limited. In this work, an experimental campaign with five vehicles equipped with ACC was conducted at the proving ground of AstaZero in Sweden to improve understanding on the properties of ACC systems and their functionality under real driving conditions. The main parameters under investigation are the response time of controllers, the available time headway settings, and the stability of the car-platoon. The results show that the response time range for the controllers is between 1.7 and 2.5 s, significantly longer than the values reported in the literature. The range of the time headway settings was found to be quite broad. Finally, a dataset of perturbations on a variety of equilibrium speeds of the car-platoon and of variable magnitudes was created.

RESULTS clearly highlight the instability of the car-platoon. Instability is also displayed even for slight perturbations derived by variability in the road gradient. Numerical differentiation on the altitude shows a negative correlation with the speed trajectory of the leading vehicle.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print