SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Fang X, Wang C, Xie L, Chen J. IEEE Trans. Cybern. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Institute of Electrical and Electronics Engineers)

DOI

10.1109/TCYB.2019.2958548

PMID

unavailable

Abstract

This article addresses a multi-pursuer single-evader pursuit-evasion game where the free-moving evader moves faster than the pursuers. Most of the existing works impose constraints on the faster evader, such as limited moving area and moving direction. When the faster evader is allowed to move freely without any constraint, the main issues are how to form an encirclement to trap the evader into the capture domain, how to balance between forming an encirclement and approaching the faster evader, and what conditions make the capture possible. In this article, a distributed pursuit algorithm is proposed to enable pursuers to form an encirclement and approach the faster evader. An algorithm that balances between forming an encirclement and approaching the faster evader is proposed. Moreover, sufficient capture conditions are derived based on the initial spatial distribution and the speed ratios of the pursuers and the evader. Simulation and experimental results on ground robots validate the effectiveness and practicability of the proposed method.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print