SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Neuroimage (Amst) 2020; 27: e102258.

Affiliation

Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, ON, Canada; Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada; Faculty of Medicine (Neurosurgery) University of Toronto, Toronto, ON, Canada; The Institute of Biomaterials & Biomedical Engineering (IBBME) at the University of Toronto, Toronto, ON, Canada.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.nicl.2020.102258

PMID

32388345

Abstract

Sport-related concussion is associated with acute disturbances in neurometabolic function, with effects that may last weeks to months after injury. However, is presently unknown whether these disturbances resolve at medical clearance to return to play (RTP) or continue to evolve over longer time intervals. Moreover, little is known about how these neurometabolic changes correlate with other measures of brain structure and function. In this study, these gaps were addressed by evaluating ninety-nine (99) university-level athletes, including 33 with sport-related concussion and 66 without recent injury, using multi-parameter magnetic resonance imaging (MRI), which included single-voxel spectroscopy (SVS), diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). The concussed athletes were scanned at the acute phase of injury (27/33 imaged), medical clearance to RTP (25/33 imaged), one month post-RTP (25/33 imaged) and one year post-RTP (13/33 imaged). We measured longitudinal changes in N-acetyl aspartate (NAA) and myo-inositol (Ins), over the course of concussion recovery. Concussed athletes showed no significant abnormalities or longitudinal change in NAA values, whereas Ins was significantly elevated at RTP and one month later. Interestingly, Ins response was attenuated by a prior history of concussion. Subsequent analyses identified significant associations between Ins values, DTI measures of white matter microstructure and fMRI measures of functional connectivity. These associations varied over the course of concussion recovery, suggesting that elevated Ins values at RTP and beyond reflect distinct changes in brain physiology, compared to acute injury. These findings provide novel information about neurometabolic recovery after a sport-related concussion, with disturbances that persist beyond medical clearance to RTP.

Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.


Language: en

Keywords

Bold fmri; Brain injury; Concussion; Dti; Neurometabolite; Svs

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print