SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Nollet M, Wisden W, Franks NP. Interface Focus 2020; 10(3): e20190092.

Affiliation

Centre for Neurotechnology, Imperial College London, London, UK.

Copyright

(Copyright © 2020, Royal Society)

DOI

10.1098/rsfs.2019.0092

PMID

32382403

PMCID

PMC7202382

Abstract

Sleep is highly conserved across evolution, suggesting vital biological functions that are yet to be fully understood. Animals and humans experiencing partial sleep restriction usually exhibit detrimental physiological responses, while total and prolonged sleep loss could lead to death. The perturbation of sleep homeostasis is usually accompanied by an increase in hypothalamic-pituitary-adrenal (HPA) axis activity, leading to a rise in circulating levels of stress hormones (e.g. cortisol in humans, corticosterone in rodents). Such hormones follow a circadian release pattern under undisturbed conditions and participate in the regulation of sleep. The investigation of the consequences of sleep deprivation, from molecular changes to behavioural alterations, has been used to study the fundamental functions of sleep. However, the reciprocal relationship between sleep and the activity of the HPA axis is problematic when investigating sleep using traditional sleep-deprivation protocols that can induce stress per se. This is especially true in studies using rodents in which sleep deprivation is achieved by exogenous, and potentially stressful, sensory-motor stimulations that can undoubtedly confuse their conclusions. While more research is needed to explore the mechanisms underlying sleep loss and health, avoiding stress as a confounding factor in sleep-deprivation studies is therefore crucial. This review examines the evidence of the intricate links between sleep and stress in the context of experimental sleep deprivation, and proposes a more sophisticated research framework for sleep-deprivation procedures that could benefit from recent progress in biotechnological tools for precise neuromodulation, such as chemogenetics and optogenetics, as well as improved automated real-time sleep-scoring algorithms.

© 2020 The Authors.


Language: en

Keywords

glucocorticoids; non-rapid eye movement sleep; rapid eye movement sleep

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print