SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Qiu J, Su S, Duan A, Feng C, Xie J, Li K, Yin Z. Sci. Prog. 2020; 103(2): e36850420908750.

Affiliation

Institute of Surgery Research, Third Affiliated Hospital, Army Medical University, Chongqing, China.

Copyright

(Copyright © 2020, Science Reviews: Blackwell Scientific Publications)

DOI

10.1177/0036850420908750

PMID

32326837

Abstract

The fatality rate can be dramatically reduced with the help of emergency medical services. The purpose of this study was to establish a computational algorithm to predict the injury severity, so as to improve the timeliness, appropriateness, and efficacy of medical care provided. The computer simulations of full-frontal crashes with rigid wall were carried out using LS-DYNA and MADYMO under different collision speeds, airbag deployment time, and seatbelt wearing condition, in which a total of 84 times simulation was conducted. Then an artificial neural network is adopted to construct relevance between head and chest injuries and the injury risk factors; 37 accident cases with Event Data Recorder data and information on occupant injury were collected to validate the model accuracy through receiver operating characteristic analysis. The results showed that delta-v, seatbelt wearing condition, and airbag deployment time were important factors in the occupant's head and chest injuries. When delta-v increased, the occupant had significantly higher level of severe injury on the head and chest; there is a significant difference of Head Injury Criterion and Combined Thoracic Index whether the occupant wore seatbelt. When the airbag deployment time was less than 20 ms, the severity of head and chest injuries did not significantly vary with the increase of deployment time. However, when the deployment time exceeded 20 ms, the severity of head and chest injuries significantly increased with increase in deployment time. The validation result of the algorithm showed that area under the curve = 0.747, p < 0.05, indicating a medium level of accuracy, nearly to previous model. The computer simulation and artificial neural network have a great potential for developing injury risk estimation algorithms suitable for Advanced Automatic Crash Notification applications, which could assist in medical decision-making and medical care.


Language: en

Keywords

Automotive collision safety; injury prediction; neural network; occupant injury; traffic accidents

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print