SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

McHugh CM, Large MM. Curr. Opin. Psychiatry 2020; ePub(ePub): ePub.

Affiliation

School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia.

Copyright

(Copyright © 2020, Lippincott Williams and Wilkins)

DOI

10.1097/YCO.0000000000000609

PMID

32250986

Abstract

PURPOSE OF REVIEW: In recent years there has been interest in the use of machine learning in suicide research in reaction to the failure of traditional statistical methods to produce clinically useful models of future suicide. The current review summarizes recent prediction studies in the suicide literature including those using machine learning approaches to understand what value these novel approaches add. RECENT FINDINGS: Studies using machine learning to predict suicide deaths report area under the curve that are only modestly greater than, and sensitivities that are equal to, those reported in studies using more conventional predictive methods. Positive predictive value remains around 1% among the cohort studies with a base rate that was not inflated by case-control methodology. SUMMARY: Machine learning or artificial intelligence may afford opportunities in mental health research and in the clinical care of suicidal patients. However, application of such techniques should be carefully considered to avoid repeating the mistakes of existing methodologies. Prediction studies using machine-learning methods have yet to make a major contribution to our understanding of the field and are unproven as clinically useful tools.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print