SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Jiao S, Zhang S, Li Z, Zhou B, Zhao D. J. Adv. Transp. 2020; 2020: e2797420.

Copyright

(Copyright © 2020, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2020/2797420

PMID

unavailable

Abstract

This paper introduces an improved car-following speed (CFS) model that simultaneously considers speed of the lead vehicle, vehicle spacing, and driver's sensitivity to them. Specifically, the proposed model extends the Helbing-Tilch model and Yang et al. model developed based on the principle of grey relational analysis where vehicle spacing is considered as the primary factor contributing to car-following speed choices. A computational experiment is conducted for model calibration using vehicle spacing, speed, and acceleration data derived from vehicle trajectory data of the Next Generation Simulation (NGSIM) project sponsored by the Federal Highway Administration (FHWA). It shows that speed of the lead vehicle and vehicle spacing significantly affect speed of the lag vehicle. Further, model validation is carried out using an independent NGSIM dataset by comparing vehicle speed predictions made by the calibrated CFS model with Helbing-Tilch model and Yang et al. model as benchmarks. Compared with speed prediction results of the benchmark models, mean relative errors, root mean square errors, and equal coefficient of speed predictions of the CFS model have reduced by 72.41% and 61.85%, 70.14% and 57.99%, and 33.15% and 14.48%, respectively. The findings of model validation reveal that the CFS model could improve the accuracy of speed predictions in the car-following process.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print