SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Groth KM, Denman MR, Darling MC, Jones TB, Luger GF. Proc. Inst. Mech. Eng. Pt. O J. Risk Reliab. 2020; 234(1): 193-207.

Copyright

(Copyright © 2020, SAGE Publishing)

DOI

10.1177/1748006X18803836

PMID

unavailable

Abstract

Accidents pose unique challenges for operating crews in complex systems such as nuclear power plants, presenting limitations in plant status information and lack of detailed monitoring, diagnosis, and response planning support. Advances in severe accident simulation and dynamic probabilistic risk assessment provide an opportunity to garner detailed insight into accident scenarios. In this article, we demonstrate how to build and use a framework which leverages dynamic probabilistic risk assessment, simulation, and dynamic Bayesian networks to provide real-time monitoring and diagnostic support for severe accidents in a nuclear power plant. We use general purpose modeling technology, the dynamic Bayesian network, and adapt it for risk management of complex engineering systems. This article presents a prototype model for monitoring and diagnosing system states associated with loss of flow and transient overpower accidents in a generic sodium fast reactor. We discuss using this framework to create a risk-informed accident management framework called Safely Managing Accidental Reactor Transients procedures. This represents a new application of risk assessment, expanding probabilistic risk assessment techniques beyond static decision support into dynamic, real-time models which support accident diagnosis and management.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print