SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Oberndorfer S, Sander P, Fuchs S. Nat. Hazards Earth Syst. Sci. 2020; 20: e2020-66.

Copyright

(Copyright © 2020, Copernicus GmbH on behalf of the European Geosciences Union)

DOI

10.5194/nhess-2020-66

PMID

unavailable

Abstract

Mountain hazard risk analysis for transport infrastructure is regularly based on deterministic approaches. Due to a variety of variables and data needed for risk computation, a considerable degree of epistemic uncertainty results. Consequently, input data needed for risk assessment is normally processed as mean values with or without scatter, or as an individual deterministic value from expert judgement if no statistical data is available. To overcome this gap, we used a probabilistic approach to express the potential bandwidth of input data with two different distribution functions, taking a mountain road in the Eastern European Alps as case study. The risk assessment included the damage potential of road infrastructure and traffic exposed to a multi-hazard environment (torrent processes, snow avalanches, rock fall). Reliable quantiles of the calculated probability density distributions attributed to the aggregated road risk due to the impact of multiple-mountain hazards were compared to the deterministic results from the standard guidelines on road safety. The results clearly show that with common deterministic approaches risk is significantly underestimated in comparison to a probabilistic risk modelling setup, mainly due to epistemic uncertainties of the input data. The study provides added value to further develop standardized road safety guidelines and may therefore be of particular importance for road authorities and political decision-makers.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print