SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Rasch A, Panero G, Boda CN, Dozza M. Accid. Anal. Prev. 2020; 139: e105494.

Affiliation

Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Hörselgången 4, 41756, Göteborg, Sweden. Electronic address: marco.dozza@chalmers.se.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.aap.2020.105494

PMID

32203729

Abstract

For pedestrians, the risk of dying in a traffic accident is highest on rural roads, which are often characterized by a lack of sidewalks and high traffic speed. In fact, hitting the pedestrian during an overtaking attempt is a common crash scenario. To develop active safety systems that avoid such crashes, it is necessary to understand and model driver behavior during the overtaking maneuvers, so that system interventions are acceptable because they happen outside drivers' comfort zone. Previous modeling of driver behavior in interactions with pedestrians primarily focused on road crossing scenarios. The aim of this study was, instead, to address pedestrian-overtaking maneuvers on rural roads. We focused our analysis on how drivers adjust their behavior with respect to three safety metrics (in order of importance): 1) minimum lateral clearance when passing the pedestrian, 2) overtaking speed at that moment, and 3) the time-to-collision at the moment of steering away to start the overtaking maneuver. The influence of three factors on the safety metrics was investigated: 1) walking direction (same as the overtaking vehicle or opposite), 2) walking position (on the edge of the vehicle lane or 0.5 m away from the edge on the paved shoulder), and 3) oncoming traffic (absent or present). Seventy-seven overtaking maneuvers in France from the naturalistic driving study UDRIVE and 297 maneuvers in Sweden from field tests were analyzed. Bayesian regression was used to model how minimum lateral clearance and overtaking speed depended on the three factors.

RESULTS showed that drivers maintained smaller minimum lateral clearance and lower overtaking speed when the pedestrian was walking in the opposite direction, on the lane edge, or when oncoming traffic was present. Minimum lateral clearance and time-to-collision were only weakly correlated with overtaking speed. The regression models predicted distributions similar to those actually observed in the data. The time-to-collision at the moment of steering away was comparable in value to the time-to-collision used by Euro NCAP for testing active safety systems in car-to-pedestrian longitudinal scenarios since 2018. This study is the first to analyze driver behavior when overtaking pedestrians, based on field test and naturalistic driving data.

RESULTS suggest that pedestrian safety is particularly endangered in situations when the pedestrian is walking opposite to traffic, close to the lane, and when oncoming traffic is present. The Bayesian regression models from this study can be used in active safety systems to model drivers' comfort in overtaking maneuvers.

Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.


Language: en

Keywords

Bayesian regression modeling; Comfort zone; Driver behavior; Euro NCAP; Overtaking; Pedestrian safety

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print