SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cannata G, Abate L, Scarabello C, Rubini M, Giacometti A, Principi N, Esposito S, Dodi I. Int. J. Environ. Res. Public Health 2020; 17(6): e1845.

Affiliation

Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph17061845

PMID

32178428

Abstract

Background: Methemoglobinemia (MET) should be suspected in cases where cyanosis is not associated with signs and symptoms of lung and/or heart disease, or in a cyanotic child exhibiting discrepancies in the partial pressure of oxygen in the arterial blood, the blood oxygen saturation, and the clinical assessment. Case presentation: A 10-month-old girl was taken to the Pediatric Emergency Department for the acute, sudden development of significant peroral cyanosis associated with gray pigmentation of the skin. The problem was evidenced approximately one hour after she ingested a homemade puree of mixed vegetables, mainly composed of potatoes and chards that had been prepared three days before and had been kept in the refrigerator since then. Physical examination revealed that the child was very pale, conscious, and without respiratory distress. Oxygen saturation of hemoglobin in the arterial blood (SpO2) was 94%. Respiratory, cardiovascular, and abdominal evaluations did not reveal any signs of disease. A venous blood sample showed chocolate-colored blood with a pH of 7.404, a partial pressure of CO2 (pCO2) of 40.6 mmHg, a partial pressure of oxygen (pO2) of 21.3 mmHg, a bicarbonate level of 24 mmol/L, and an oxygen saturation (SO2%) of 47.7%. CO-oximetry carried out simultaneously identified a methemoglobin level of 22%. MET was suspected, and oxygen via nasal cannula at a rate of 4 L/min was given with only a slight increase in oxygen saturation (96%). Slow intravenous injection of methylene blue 1 mg/kg over a period of 5 min was initiated. The peripheral oxygen saturation (SpO2) gradually improved to 100% over the next 20 min. Forty minutes later, venous blood gas analysis showed a methemoglobin level of 0.9% with a complete resolution of cyanosis; supplemental oxygen via nasal cannula was therefore discontinued. During the next 36 h, the patient remained hemodynamically stable with good oxygenation on room air. Conclusions: This case report shows that recognition of acquired MET in a child with sudden cyanosis onset requires a high index of suspicion. In daily activities, there is a need to pay particular attention when homemade vegetable soups for child alimentation are prepared. The consumption of vegetable soups must occur immediately after preparation. Storage in a refrigerator must last no more than 24 h and if longer storage is needed, vegetable soups should be frozen.


Language: en

Keywords

CO-oximetry; cyanosis; hemogasanalysis; methemoglobin; methemoglobinemia; methylene blue

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print