SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Nyazika T, Jimenez M, Samyn F, Bourbigot S. J. Fire Sci. 2019; 37(4-6): 377-433.

Copyright

(Copyright © 2019, SAGE Publishing)

DOI

10.1177/0734904119852740

PMID

unavailable

Abstract

Over the past years, pyrolysis models have moved from thermal models to comprehensive models with great flexibility including multi-step decomposition reactions. However, the downside is the need for a complete set of input data such as the material properties and the parameters related to the decomposition kinetics. Some of the parameters are not directly measurable or are difficult to determine and they carry a certain degree of uncertainty at high temperatures especially for materials that can melt, shrink, or swell. One can obtain input parameters by searching through the literature; however, certain materials may have the same nomenclature but the material properties may vary depending on the manufacturer, thereby inducing uncertainties in the model. Modelers have resorted to the use of optimization techniques such as gradient-based and direct search methods to estimate input parameters from experimental bench-scale data. As an integral part of the model, a sensitivity study allows to identify the role of each input parameter on the outputs. This work presents an overview of pyrolysis modeling, sensitivity analysis, and optimization techniques used to predict the fire behavior of combustible solids when exposed to an external heat flux.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print