SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zheng L, Wang O, Hao S, Ye C, Liu M, Xia M, Sabo AN, Markovic L, Stearns F, Kanov L, Sylvester KG, Widen E, McElhinney DB, Zhang W, Liao J, Ling XB. Transl. Psychiatr. 2020; 10(1): e72.

Affiliation

Department of Surgery, Stanford University, Stanford, CA, USA. bxling@stanford.edu.

Copyright

(Copyright © 2020, Nature Publishing Group)

DOI

10.1038/s41398-020-0684-2

PMID

32080165

Abstract

Suicide is the tenth leading cause of death in the United States (US). An early-warning system (EWS) for suicide attempt could prove valuable for identifying those at risk of suicide attempts, and analyzing the contribution of repeated attempts to the risk of eventual death by suicide. In this study we sought to develop an EWS for high-risk suicide attempt patients through the development of a population-based risk stratification surveillance system. Advanced machine-learning algorithms and deep neural networks were utilized to build models with the data from electronic health records (EHRs). A final risk score was calculated for each individual and calibrated to indicate the probability of a suicide attempt in the following 1-year time period. Risk scores were subjected to individual-level analysis in order to aid in the interpretation of the results for health-care providers managing the at-risk cohorts. The 1-year suicide attempt risk model attained an area under the curve (AUC ROC) of 0.792 and 0.769 in the retrospective and prospective cohorts, respectively. The suicide attempt rate in the "very high risk" category was 60 times greater than the population baseline when tested in the prospective cohorts. Mental health disorders including depression, bipolar disorders and anxiety, along with substance abuse, impulse control disorders, clinical utilization indicators, and socioeconomic determinants were recognized as significant features associated with incident suicide attempt.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print