SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Storm PJ, Bhulai S, Kager W, Mandjes M. Phys. Rev. E 2020; 101(1-1): e012311.

Affiliation

University of Amsterdam, 1012 WX Amsterdam, The Netherlands.

Copyright

(Copyright © 2020, American Physical Society)

DOI

10.1103/PhysRevE.101.012311

PMID

32069553

Abstract

This paper introduces a general model of a single-lane roundabout, represented as a circular lattice that consists of L cells, with Markovian traffic dynamics. Vehicles enter the roundabout via on-ramp queues that have stochastic arrival processes, remain on the roundabout a random number of cells, and depart via off-ramps. Importantly, the model does not oversimplify the dynamics of traffic on roundabouts, while various performance-related quantities (such as delay and queue length) allow an analytical characterization. In particular, we present an explicit expression for the marginal stationary distribution of each cell on the lattice. Moreover, we derive results that give insight on the dependencies between parts of the roundabout, and on the queue distribution. Finally, we find scaling limits that allow, for every partition of the roundabout in segments, to approximate (i) the joint distribution of the occupation of these segments by a multivariate Gaussian distribution, and (ii) the joint distribution of their total queue lengths by a collection of independent Poisson random variables. To verify the scaling limit statements, we develop a way to empirically assess convergence in distribution of random variables.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print