SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lamp A, McCullough D, Chen JMC, Brown RE, Belenky G. Aerosp. Med. Hum. Perform. 2019; 90(2): 109-115.

Copyright

(Copyright © 2019, Aerospace Medical Association)

DOI

10.3357/AMHP.5117.2019

PMID

30670120

Abstract

INTRODUCTION: Despite the clear need for understanding how pilot sleep affects performance during long-range (LR; 12-16h) and ultra-long-range (ULR; 16+h) flights, the scientific literature on the effects of sleep loss and circadian desynchronization on pilots' sleep in commercial aviation is sparse.METHODS: We assessed pilots' sleep timing, duration, and post-trip recovery on two LR and two ULR nonstop California to Australasia routes. Pilot's sleep/wake history was measured with actigraphy and verified by logbook across 8-9 d.RESULTS: Pilots averaged 8.210 ± 1.687 SD hours of sleep per 24 h across the study period. A logistic model of the circadian timing of sleep indicated that time of day and phase of trip are significant predictors of pilots being asleep. Significant two- and three-way interactions were found between time of day, phase of trip, and route. A significant difference in average sleep time was observed between baseline and recovery day 1 for one route. All other recovery days and routes were not significantly different from baseline.DISCUSSION: For the four routes, the average amount of sleep per 24-h period during the study period was within the normal range with the circadian rhythm aligned to home-base time pre- and post-trip. Flight segments and layover conditions were associated with a misalignment of sleep relative to circadian rhythm, with layover sleep appearing to shift toward the local night. Full post-trip sleep duration recovery appears to occur for all routes within 1-2 d.Lamp A, McCullough D, Chen JMC, Brown RE, Belenky G. Pilot sleep in long-range and ultra-long-range commercial flights. Aerosp Med Hum Perform. 2019; 90(2):109-115.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print