SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shi QX, Chen B, Nie C, Zhao ZP, Zhang JH, Si SY, Cui SJ, Gu JW. Brain Res. Bull. 2020; ePub(ePub): ePub.

Affiliation

Department of Neurosurgery, The 306th hospital, The Chinese People's Liberation Army, Beijing, 100101, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100101, China. Electronic address: gujianwen196606@163.com.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.brainresbull.2020.02.002

PMID

32044361

Abstract

Improvised explosive devices (IEDs) represent the leading causes for casualties among civilians and soldiers in the present war (including counter-terrorism). Traumatic brain injury (TBI) caused by IEDs results in different degrees of impairment of cognition and behavior, but the exact brain pathophysiological mechanism following exposure to blast has not been clearly investigated. Here, we sought to establish a rat model of closed-head blast injury using compressed gas to deliver a single blast only to the brain without systemic injuries. The cognitive functions of these bTBI models were assessed by Morris Water Maze test (MWM test). The HE staining, flow cytometry, ELISA and Western Blotting were used to measure the effects of shock wave on general histology, regulatory T (Treg) cells percentage, inflammatory reactions, the expression and phosphorylation level of tau, respectively. In addition, the brain water content and 24 -h mortality were also assessed. As the distance from the blast source increased, the input pressure did not change, the overpressure decreased, and the mortality decreased. Receiver operating characteristic (ROC) curves for predicting 24 -h mortality using peak overpressure fits with the following areas under ROC curves: 0.833. In 2 weeks after blast injury, cognitive tests revealed significantly decreased performance at 20 cm distance from the blast (about 136.44 kPa) as demonstrated by increased escape latency in the acquisition phase, and decreased crossing numbers in the probe phase of MWM test. Interestingly, a single blast exposure (at 20 cm) lead to significantly increased tau phosphorylation at the Thr205 epitope but not at the Ser404 and Ser262 epitopes at 12 h, 24 h, 3d, and 7d after blast injury. Blast decreased the percentage of CD4 + T cells, CD8 + T cells, Treg cells and lymphocytes at different time points after blast injury, and blast increased the percentage of neutrophils at 12 h after blast injury and significantly increased IL-6 production at 12 h, 24 h and 3d after blast injury. In addition, blast lead to an increase of brain edema at 24 h and 3d after blast injury. However, no obvious alterations in brain gross pathology were found acutely in the blast-exposed rats. In conclusion, we established a rat model of simple craniocerebral blast injury characterized by impairment of cognitive function, Thr205 phosphorylation of tau, decreased Treg cells and increased inflammatory reactions and brain edema. We expect this model may help clarify the underlying mechanism after blast injury and possibly serve as a useful animal model in the development of novel therapeutic and diagnostic approaches.

Copyright © 2020. Published by Elsevier Inc.


Language: en

Keywords

blast; cognitive function; rat; tau; traumatic brain injury

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print