SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Geng J, Murè S, Demichela M, Baldissone G. Safety (Basel) 2020; 6(1): e5.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/safety6010005

PMID

unavailable

Abstract

ATEX (explosive atmosphere) risk assessment is required when any equipment or system could generate a potentially explosive atmosphere. Despite the fact that many operations on plants and equipment containing dangerous substances are performed by operators, influences of human and organizational factors (HOF) are mostly neglected in the ATEX risk assessment. The integrated methodology described here is proposed to address two challenges: (1) identification of the HOF influence on the ATEX risk assessment, and (2) quantification of the HOF influence. The proposed methodology enriches the traditional ATEX risk assessment procedure, which consists of four steps: (1) area classification, (2) ignition source identification, (3) damage analysis, and (4) ATEX risk evaluation. The advantages of the ATEX-HOF methodology are demonstrated through the application to a paint mixing station in an automotive manufacturing plant. The ATEX risk assessment methodologies are mainly semi-quantitative. The ATEX-HOF methodology provides a quantitative analysis for the area classification and ignition source identification, and a semi-quantitative approach for the damage analysis. As a result, the ATEX-HOF risk evaluation becomes more accurate. An event tree-based probabilistic assessment has been introduced, considering both the technical barrier failure (Prtbf) and the human intervention in terms of human error probability (HEP). The case study allowed for demonstrating how taking HOFs into account is particularly important in companies where the safety culture is lower and consequently, the usual hypothesis of the correctness of operator intervention (in maintenance, normal operations, and emergency) could bring to non-conservative results.


Language: en

Keywords

explosive atmosphere (ATEX) risk assessment; human and organizational factors (HOF); human reliability analysis (HRA); probabilistic safety assessment (PSA)

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print