SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cando-Jácome M, Martínez-Graña A, Valdés V. Int. J. Environ. Res. Public Health 2020; 17(3): e753.

Affiliation

Geology Department, External Geodynamics Area, Faculty of Sciences, University of Salamanca, Plaza Merced s/n, 37008 Salamanca, Spain.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph17030753

PMID

31991618

Abstract

Synthetic Aperture Radar Interferometry (InSAR) is a spatial technique based on obtaining the phase differences of two radar images, acquired by a satellite from separate orbits and at different times, to obtain a ground displacement image of a study area, This image is called interferogram. On the other hand, space syntax is a technique within architecture that is applied to quantify and describe the level of ease of population movement through any urban space in a city. It analyzes the flow, transit, displacement, accessibility and concentration of the population in areas of basic services, health, security, commerce and entertainment. What would happen if an earthquake greater than 6 or 7 Moment Magnitude-Mw occurs in these areas of intense concentration of the population that are in buildings constructed on intense deformations of the land? With respect to the seismic risk in the city of Quito, many studies related to seismic risks have been published, but there are no studies that relate the deformation of the land (INSAR) with the space syntax, so this article presents a new vision in the joint application of these tools, a useful vision for urban planners and designers, considering the occurrence of a major earthquake in areas of buildings that are located on intense land deformations and have high population concentrations. This study has been prepared in two phases: in the first phase, the built-up areas concentrated in the greatest terrain deformations by accumulated displacement obtained using the APS estimation & multitemporal analysis by PSI-InSAR time series analysis methodology and Sentinel 1A and 1B satellite images were categorized. In the second phase, through the space syntax's theory and the use of DepthmapX, the movement patterns and traffic flows of the population were determined by means of graphs of spaces interconnected by streets (axial maps), to predict the spatial behavior of humans and its concentration in the mentioned sites. Finally, the results were integrated, determining the degree of exposure of the population found in built areas with high to very high displacement and an intense population concentration.


Language: en

Keywords

INSAR; exposure urban; ground deformation; natural disasters; spatial modeling

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print