SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lin C, Lu J, Wang G, Zhou J. IEEE Trans. Image Process. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TIP.2020.2966371

PMID

31976899

Abstract

In this paper, we propose a graininess-aware deep feature learning method for pedestrian detection. Unlike most existing methods which utilize the convolutional features without explicit distinction, we appropriately exploit multiple convolutional layers and dynamically select most informative features. Specifically, we train a multi-scale pedestrian attention via pixel-wise segmentation supervision to efficiently identify the pedestrian of particular scales. We encodes the fine-grained attention map into the feature maps of the detection layers to guide them to highlight the pedestrians of specific scale and avoid the background interference. The graininess-aware feature maps generated with our attention mechanism are more focused on pedestrians, and in particular on the small-scale and occluded targets. We further introduce a zoom-in-zoom-out module to enhances the features by incorporating local details and context information. Extensive experimental results on five challenging pedestrian detection benchmarks show that our method achieves very competitive or even better performance with the state-of-the-arts and is faster than most existing approaches.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print