SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Parasumanna ABK, Karle US, Saraf MR. World Elec. Veh. J. 2019; 10(4): e69.

Copyright

(Copyright © 2019, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/wevj10040069

PMID

unavailable

Abstract

Battery packaging in a vehicle depends on the cell chemistry being used and its behavior plays an important role in the safety of the entire battery pack. Chemical degradation of various parts of a cell such as the cathode or anode is a concern as it adversely affects performance and safety. A cell in its battery pack once assembled can have two different mechanical abuse condition. One is the vibration generated from the vehicle and the second is the intrusion of external elements in case of accident. In this paper, a commercially available 32,700 lithium ion cell with lithium iron phosphate (LFP) chemistry is studied for its response to both the abuse conditions at two different states of charge (SoC). The primary aim of this study is to understand their effect on the surface morphology of the cathode and the anode. The cells are also characterized to study impedance behavior before and after being abused mechanically. The cells tested for vibration were also analyzed for dynamic stiffness. A microscopy technique such as scanning electron microscopy (SEM) was used to study the surface morphology and electrochemical impedance spectroscopy (EIS) characterization was carried out to study the internal resistance of the cell. It was observed that there was a drop in internal resistance and increase in the stiffness after the cells subjected to mechanical abuse. The study also revealed different morphology at the center and at the corner of the cell subjected to nail penetration at 50% SoC.


Language: en

Keywords

electrode; internal resistance; lithium battery; materials; safety

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print