SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Czyżewski A, Kurowski A, Odya P, Szczuko P. Biomed. Eng. Online 2020; 19(1): e2.

Affiliation

Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland.

Copyright

(Copyright © 2020, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/s12938-019-0746-y

PMID

31924202

Abstract

BACKGROUND: A lack of communication with people suffering from acquired brain injuries may lead to drawing erroneous conclusions regarding the diagnosis or therapy of patients. Information technology and neuroscience make it possible to enhance the diagnostic and rehabilitation process of patients with traumatic brain injury or post-hypoxia. In this paper, we present a new method for evaluation possibility of communication and the assessment of such patients' state employing future generation computers extended with advanced human-machine interfaces.

METHODS: First, the hearing abilities of 33 participants in the state of coma were evaluated using auditory brainstem response measurements (ABR). Next, a series of interactive computer-based exercise sessions were performed with the therapist's assistance. Participants' actions were monitored with an eye-gaze tracking (EGT) device and with an electroencephalogram EEG monitoring headset. The data gathered were processed with the use of data clustering techniques.

RESULTS: Analysis showed that the data gathered and the computer-based methods developed for their processing are suitable for evaluating the participants' responses to stimuli. Parameters obtained from EEG signals and eye-tracker data were correlated with Glasgow Coma Scale (GCS) scores and enabled separation between GCS-related classes. The results show that in the EEG and eye-tracker signals, there are specific consciousness-related states discoverable. We observe them as outliers in diagrams on the decision space generated by the autoencoder. For this reason, the numerical variable that separates particular groups of people with the same GCS is the variance of the distance of points from the cluster center that the autoencoder generates. The higher the GCS score, the greater the variance in most cases. The results proved to be statistically significant in this context.

CONCLUSIONS: The results indicate that the method proposed may help to assess the consciousness state of participants in an objective manner.


Language: en

Keywords

Acquired brainstem response; Auditory brainstem injuries; Data clustering analysis; Electroencephalography; Eye tracking; Human–computer interfaces; Multimedia computers

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print