SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kovaceva J, Bálint A, Schindler R, Schneider A. Accid. Anal. Prev. 2020; 136: e105352.

Affiliation

AUDI AG, Germany.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.aap.2019.105352

PMID

31918043

Abstract

Cyclists and pedestrians account for a significant share of fatalities and serious injuries in the road transport system. In order to protect them, advanced driver assistance systems are being developed and introduced to the market, including autonomous emergency braking and steering systems (AEBSS) that autonomously perform braking or an evasive manoeuvre by steering in case of a pending collision, in order to avoid the collision or mitigate its severity. This study proposes a new prospective framework for quantifying safety benefit of AEBSS for the protection of cyclists and pedestrians in terms of saved lives and reduction in the number of people suffering serious injuries. The core of the framework is a novel application of Bayesian inference in such a way that prior information from counterfactual simulation is updated with new observations from real-world testing of a prototype AEBSS. As an illustration of the method, the framework is applied for safety benefit assessment of the AEBSS developed in the European Union (EU) project PROSPECT. In this application of the framework, counterfactual simulation results based on the German In-Depth Accident Study Pre-Crash Matrix (GIDAS-PCM) data were combined with results from real-world tests on proving grounds. The proposed framework gives a systematic way for the combination of results from different sources and can be considered for understanding the real-world benefit of new AEBSS. Additionally, the Bayesian modelling approach used in this paper has a great potential to be used in a wide range of other research studies.

Copyright © 2019 Elsevier Ltd. All rights reserved.


Language: en

Keywords

Active safety assessment; Autonomous emergency braking; Bayesian modelling; Combination of results; Vulnerable road users

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print