SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ramakrishnan T, Kim SH, Reed KB. Appl. Bionics Biomech. 2019; 2019: 1286864.

Affiliation

University of South Florida, USA.

Copyright

(Copyright © 2019, Hindawi Publishing)

DOI

10.1155/2019/1286864

PMID

31814843

PMCID

PMC6877909

Abstract

The combined gait asymmetry metric (CGAM) provides a method to synthesize human gait motion. The metric is weighted to balance each parameter's effect by normalizing the data so all parameters are more equally weighted. It is designed to combine spatial, temporal, kinematic, and kinetic gait parameter asymmetries. It can also combine subsets of the different gait parameters to provide a more thorough analysis. The single number quantifying gait could assist robotic rehabilitation methods to optimize the resulting gait patterns. CGAM will help define quantitative thresholds for achievable balanced overall gait asymmetry. The study presented here compares the combined gait parameters with clinical measures such as timed up and go (TUG), six-minute walk test (6MWT), and gait velocity. The comparisons are made on gait data collected on individuals with stroke before and after twelve sessions of rehabilitation. Step length, step time, and swing time showed a strong correlation to CGAM, but the double limb support asymmetry has nearly no correlation with CGAM and ground reaction force asymmetry has a weak correlation. The CGAM scores were moderately correlated with TUG and strongly correlated to 6MWT and gait velocity.

Copyright © 2019 Tyagi Ramakrishnan et al.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print