SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Geniole SN, Bird BM, McVittie JS, Purcell RB, Archer J, Carré JM. Horm. Behav. 2019; ePub(ePub): ePub.

Affiliation

Department of Psychology, Nipissing University, 100 College Dr., North Bay, Ontario P1B 8L7, Canada. Electronic address: justinca@nipissingu.ca.

Copyright

(Copyright © 2019, Elsevier Publishing)

DOI

10.1016/j.yhbeh.2019.104644

PMID

31785281

Abstract

Testosterone is often considered a critical regulator of aggressive behaviour. There is castration/replacement evidence that testosterone indeed drives aggression in some species, but causal evidence in humans is generally lacking and/or-for the few studies that have pharmacologically manipulated testosterone concentrations-inconsistent. More often researchers have examined differences in baseline testosterone concentrations between groups known to differ in aggressiveness (e.g., violent vs non-violent criminals) or within a given sample using a correlational approach. Nevertheless, testosterone is not static but instead fluctuates in response to cues of challenge in the environment, and these challenge-induced fluctuations may more strongly regulate situation-specific aggressive behaviour. Here, we quantitatively summarize literature from all three approaches (baseline, change, and manipulation), providing the most comprehensive meta-analysis of these testosterone-aggression associations/effects in humans to date. Baseline testosterone shared a weak but significant association with aggression (r = 0.054, 95% CIs [0.028, 0.080]), an effect that was stronger and significant in men (r = 0.071, 95% CIs [0.041, 0.101]), but not women (r = 0.002, 95% CIs [-0.041, 0.044]). Changes in T were positively correlated with aggression (r = 0.108, 95% CIs [0.041, 0.174]), an effect that was also stronger and significant in men (r = 0.162, 95% CIs [0.076, 0.246]), but not women (r = 0.010, 95% CIs [-0.090, 0.109]). The causal effects of testosterone on human aggression were weaker yet, and not statistically significant (r = 0.046, 95% CIs [-0.015, 0.108]). We discuss the multiple moderators identified here (e.g., offender status of samples, sex) and elsewhere that may explain these generally weak effects. We also offer suggestions regarding methodology and sample sizes to best capture these associations in future work.

Copyright © 2019. Published by Elsevier Inc.


Language: en

Keywords

Androgens; Challenge hypothesis; Pharmacological challenge; Sex differences

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print