SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Raj R, Luostarinen T, Pursiainen E, Posti JP, Takala RSK, Bendel S, Konttila T, Korja M. Sci. Rep. 2019; 9(1): e17672.

Affiliation

Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, PB 266, 00029 HUS, Helsinki, Finland.

Copyright

(Copyright © 2019, Nature Publishing Group)

DOI

10.1038/s41598-019-53889-6

PMID

31776366

Abstract

Our aim was to create simple and largely scalable machine learning-based algorithms that could predict mortality in a real-time fashion during intensive care after traumatic brain injury. We performed an observational multicenter study including adult TBI patients that were monitored for intracranial pressure (ICP) for at least 24 h in three ICUs. We used machine learning-based logistic regression modeling to create two algorithms (based on ICP, mean arterial pressure [MAP], cerebral perfusion pressure [CPP] and Glasgow Coma Scale [GCS]) to predict 30-day mortality. We used a stratified cross-validation technique for internal validation. Of 472 included patients, 92 patients (19%) died within 30 days. Following cross-validation, the ICP-MAP-CPP algorithm's area under the receiver operating characteristic curve (AUC) increased from 0.67 (95% confidence interval [CI] 0.60-0.74) on day 1 to 0.81 (95% CI 0.75-0.87) on day 5. The ICP-MAP-CPP-GCS algorithm's AUC increased from 0.72 (95% CI 0.64-0.78) on day 1 to 0.84 (95% CI 0.78-0.90) on day 5. Algorithm misclassification was seen among patients undergoing decompressive craniectomy. In conclusion, we present a new concept of dynamic prognostication for patients with TBI treated in the ICU. Our simple algorithms, based on only three and four main variables, discriminated between survivors and non-survivors with accuracies up to 81% and 84%. These open-sourced simple algorithms can likely be further developed, also in low and middle-income countries.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print