SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Harirforoush H, Bellalite L, Bénié GB. Am. J. Traffic Transp. Eng. 2019; 4(1): 7-16.

Copyright

(Copyright © 2019, Science Publishing Group)

DOI

10.11648/j.ajtte.20190401.12

PMID

unavailable

Abstract

This paper presents an approach to analyze spatial and temporal (spatiotemporal) patterns of traffic accidents and to organize them according to their level of significance. This approach was tested using three years (2011-2013) of traffic accident data for Sherbrooke. The spatiotemporal patterns of traffic accidents were analyzed using kernel density estimation (KDE) for four different seasons. Two different crash measures were compared: simple crash counts and severity-weighted crash counts. The results show that severity-weighted crash counts reveal the effect of a single fatal/severe injury or light injury crash on the patterns. However, the lack of a significance test is the main drawback of the KDE. Therefore, this paper integrates the KDE with local Moran's I to identify clusters of statistical significance for traffic accidents within each area. Thus, after the density is calculated by the KDE, it is then applied as the attribute (input value) for calculating local Moran's I. Our findings show that the method was successful to detect traffic accident clusters and hazardous areas in Sherbrooke.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print