SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang Z, Liu X, Holt K. Transp. Res. Rec. 2019; 2673(9): 471-479.

Copyright

(Copyright © 2019, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198119846104

PMID

unavailable

Abstract

A series of end-of-track collisions occurred in passenger terminals because of noncompliant actions from disengaged or inattentive engineers, resulting in significant property damage and casualties. Compared with other types of accidents, end-of-track collision has received much less attention in the prior research. To narrow this knowledge gap, this paper firstly analyzes the safety statistics of end-of-track collisions, then develops a fault tree analysis to understand the causes and contributing factors of end-of-track collisions. With the objective of mitigating this type of risk, this paper discusses the potential implementation of Positive Train Control (PTC) for the passenger terminal. This paper primarily focuses on the enforcement of the two most widely implemented systems, the Advanced Civil Speed Enforcement System (ACSES) and the Interoperable Electronic Train Management System (I-ETMS). For each implementation scenario, the Concept of Operations (ConOps) is proposed that depicts high-level system characteristics for the proposed PTC system enforcement at stub-end terminals. Ongoing work is being carried out by the authors to fully evaluate the cost-effectiveness and operational impacts of enforcing PTC in terminating tracks to prevent end-of-track collisions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print