SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang Z, Zheng J, Xu H, Wang X. Transp. Res. Rec. 2019; 2673(9): 62-71.

Copyright

(Copyright © 2019, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198119844457

PMID

unavailable

Abstract

The problem of traffic safety has become increasingly prominent owing to the increase in the number of cars. Traffic accidents often occur in an instant, which makes it necessary to obtain traffic data with high resolution. High-resolution micro traffic data (HRMTD) indicates that the spatial resolution reaches the centimeter level and that the temporal resolution reaches the millisecond level. The position, direction, speed, and acceleration of objects on the road can be extracted with HRMTD. In this paper, a LiDAR sensor was installed at the roadside for data collection. An adjacent-frame fusion method for vehicle detection and tracking in complex traffic circumstances is presented. Compared with the previous research, objects can be detected and tracked without object model extraction or a bounding box description. In addition, problems caused by occlusion can be improved using adjacent frames fusion in the vehicle detection and tracking algorithms in this paper. The data processing procedure are as follows: selection of area of interest, ground point removal, vehicle clustering, and vehicle tracking. The algorithm has been tested at different sites (in Reno and Suzhou), and the results demonstrate that the algorithm can perform well in both simple and complex application scenarios.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print