SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Eddy C, de Saxe C, Cebon D. Proc. Inst. Mech. Eng. Pt. D J. Automobile Eng. 2019; 233(7): 1793-1805.

Copyright

(Copyright © 2019, Institution of Mechanical Engineers, Publisher SAGE Publishing)

DOI

10.1177/0954407018789301

PMID

unavailable

Abstract

Heavy goods vehicles are overrepresented in cyclist fatality statistics in the United Kingdom relative to their proportion of total traffic volume. In particular, the statistics highlight a problem for vehicles turning left across the path of a cyclist on their inside. In this article, we present a camera-based system to detect and track cyclists in the blind spot. The system uses boosted classifiers and geometric constraints to detect cyclist wheels, and Canny edge detection to locate the ground contact point. The locations of these points are mapped into physical coordinates using a calibration system based on the ground plane. A Kalman Filter is used to track and predict the future motion of the cyclist. Full-scale tests were conducted using a construction vehicle fitted with two cameras, and the results compared with measurements from an ultrasonic-sensor system. Errors were comparable to the ultrasonic system, with average error standard deviation of 4.3 cm when the cyclist was 1.5 m from the heavy goods vehicles, and 7.1 cm at a distance of 1 m. When results were compared to manually extracted cyclist position data, errors were less than 4 cm at separations of 1.5 and 1 m. Compared to the ultrasonic system, the camera system requires simple hardware and can easily differentiate cyclists from stationary or moving background objects such as parked cars or roadside furniture. However, the cameras suffer from reduced robustness and accuracy at close range and cannot operate in low-light conditions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print