SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Albinsson A, Bruzelius F, Jacobson B, Ran S. Proc. Inst. Mech. Eng. Pt. D J. Automobile Eng. 2019; 233(1): 18-27.

Copyright

(Copyright © 2019, Institution of Mechanical Engineers, Publisher SAGE Publishing)

DOI

10.1177/0954407018777581

PMID

unavailable

Abstract

The development process for passenger cars is both time- and resource-consuming. Full vehicle testing is an extensive part of the development process that consumes large amount of resources, especially within the field of vehicle dynamics and active safety. By replacing physical testing with complete vehicle simulations, both the development time and cost can potentially be reduced. This requires accurate simulation models that represent the real vehicle. One major challenge with full vehicle simulation models is the representation of tyres in terms of force and moment generation. The force and moment generation of the tyres is affected by both operating conditions and road surface. Vehicle-based tyre testing offers a fast and efficient way to rescale force and moment tyre models to different road surfaces, in this study the Pacejka 2002 model. The resulting tyre model is sensitive to both the operating conditions during testing and the road surface used. This study investigates the influence of the slip angle sweep rate and road surface on the lateral tyre force characteristics of the fitted tyre model. Tyre models fitted to different manoeuvres are compared and the influence on the full vehicle behaviour is investigated in IPG Carmaker. The results show that by using the wrong road surface, the resulting tyre model can end up outside the tolerances specified by the ISO standard for vehicle simulation model verification in steady-state cornering. The use of Pacejka 2002 models parameterized in a steady-state manoeuvre to simulate the vehicle behaviour in sine-with-dwell manoeuvres is also discussed.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print