SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bornstein H, Ryan S, Mouritz AP. Int. J. Impact Eng. 2019; 127: 41-61.

Copyright

(Copyright © 2019, Elsevier Publishing)

DOI

10.1016/j.ijimpeng.2019.01.006

PMID

unavailable

Abstract

A combined experimental and numerical investigation was conducted into evaluating the influence of the geometry of a water-filled container on maximising the reduction in deformation it provides to a high-strength steel plate subject to localised blast loading. Experiments were conducted with a range of novel container shapes including a cone, inverted cone, diamond and mushroom. In addition to these container shapes, an array of water bottles known as a kinetic energy defeat device (KEDD) and a high performing quadrangular container design were also evaluated. The performance of each container was evaluated in terms of both the reduction in deformation of a steel target plate and the efficiency of the mitigation in terms of the reduction per unit mass of water. The numerical simulations were found to provide adequate predictions for the novel container shapes. They were then used to isolate the differences in target loading for each container type. Further numerical simulations were then performed to identify improvements in the design of the best performing containers. The best performing novel geometries were the mushroom and inverted cone shaped containers, which are more effective at radially spreading the water. However, the mushroom shaped container was the only container found to outperform the most efficient quadrangular container on a mass efficiency basis. The results of this investigation can be used to assist in the design of water-filled containers that are used as part of a near-field blast protection system on an armoured vehicle or other protected structure.


Language: en

Keywords

Blast; Blast protection; Geometry; Numerical simulation; Water

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print