SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dong S, Zhou J, Zhang S. J. Adv. Transp. 2019; 2019: e7341097.

Copyright

(Copyright © 2019, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2019/7341097

PMID

unavailable

Abstract

Rapidly increasing e-bike use in China has resulted in new traffic problems including rising accident rates at intersections related to e-bike drivers' decision-making during multiple signal phases. Traditional one-step decision models (such as GHM) lack randomness and cannot adequately model e-bike drivers' complex behavior. Therefore, this study used a Hidden Markov Driving Model (HMDM) to analyze e-bike drivers' decision-making process based on high-resolution trajectory data. Video data were collected at three intersections in Shanghai and processed for use in the HMDM model. Five decision types (pass, stop, stop-pass, pass-stop, and multiple) composed of speed and acceleration/deceleration information were defined and used to analyze the impact of flashing green signals on e-bike drivers' behavior and decision-making processes. Approximately 40% of drivers made multiple decisions during the flashing green and yellow signal phases, in contrast to the traditional GHM model assumption that drivers only make one decision. Distance from stop-line had the most obvious influence on the number of decisions. The use of flashing green signals nearly eliminated the dilemma zone for e-bike drivers but enlarged the option zone, inducing more stop/pass decisions. HMDM can be applied to improve the accuracy of traffic simulation, the fine design of traffic signals, the stability analysis of traffic control schemes, and so on.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print