SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Duff TJ, Chong DM, Penman TD. Int. J. Wildland Fire 2018; 27(8): 514-524.

Copyright

(Copyright © 2018, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF17180

PMID

unavailable

Abstract

Fast-moving wildfires can result in substantial losses of infrastructure, property and life. During such events, real-time intelligence is critical for managing firefighting activities and public safety. The ability of fixed-site weather radars to detect the plumes from fires has long been recognised; however, quantitative methods to link properties of radar observed plumes to fire behaviour are lacking. We investigated the potential for weather radars to provide real time estimates of the growth of large fires in south-eastern Australia. Specifically, we examined whether the rate of change in fire area could be approximated using the change in volume represented by radar returns. We evaluated a series of linear mixed-effects models predicting fire-area growth using radar data representing a range of dBZ thresholds and search volumes. Models were compared using an information-theoretic approach. Radar return volume was found to be a robust predictor of fire-area change. The best model had a minimum threshold of 10 dBZ and a search radius of 60 km (R2 = 0.64). Fire area and radar relationships did not vary significantly between radar stations, suggesting broad applicability beyond the dataset. Further development of the use of weather radars for wildfire monitoring could yield substantial benefits because of their high frequency of scan and broad coverage over many populated areas.

Additional keywords: bushfire, dBZ, detection, rain radar, wildland fire.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print