SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Rahimi A, Azimi G, Asgari H, Jin X. Transp. Res. Rec. 2019; 2673(8): 73-85.

Copyright

(Copyright © 2019, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198119839347

PMID

unavailable

Abstract

Heterogeneity of crash data masks the underlying crash patterns and perplexes crash analysis. This paper aims to explore an advanced high-dimensional clustering approach to investigate heterogeneity in large datasets. Detailed records of crashes involving large trucks occurring in the state of Florida between 2007 and 2016 were examined to identify truck crash patterns and significant conditions contributing to the patterns. The block clustering method was applied to more than 220,000 crash records with nearly 200 attributes. The analysis showed promising results in segmenting a large heterogeneous dataset into meaningful subgroups (with 95.72% average degree of homogeneity for selected blocks). The goodness of fit for clustering methods is evaluated and both integrated completed likelihood (ICL) and pseudo-likelihood values improved significantly (20.8% and 21.1% respectively). Attribute clustering showed distinct characteristics for each cluster. Crash clustering revealed significant differences among the clusters and suggested that this crash dataset could be portioned as same-direction, opposing-direction, and single-vehicle crashes. Individual blocks defined by both row and column clustering were further investigated to better understand the contribution set of conditions that lead to large truck crashes. Major features for each of the three major types of crashes were analyzed, which may provide additional insights to develop potential countermeasures and strategies that target specific segments. The clustering approach could be used as a preanalysis method to identify homogeneous subgroups for further analysis, which will help enhance the effectiveness of safety programs.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print