SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu W, Liao S, Hu W. IEEE Trans. Image Process. 2019; ePub(ePub): ePub.

Copyright

(Copyright © 2019, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TIP.2019.2938877

PMID

31535991

Abstract

Though Faster R-CNN based two-stage detectors have witnessed significant boost in pedestrian detection accuracy, they are still slow for practical applications. One solution is to simplify this working flow as a single-stage detector. However, current single-stage detectors (e.g. SSD) have not presented competitive accuracy on common pedestrian detection benchmarks. Accordingly, a structurally simple but effective module called Asymptotic Localization Fitting (ALF) is proposed, which stacks a series of predictors to directly evolve the default anchor boxes of SSD step by step to improve detection results. Additionally, combining the advantages from residual learning and multi-scale context encoding, a bottleneck block is proposed to enhance the predictors' discriminative power. On top of the above designs, an efficient single-stage detection architecture is designed, resulting in an attractive pedestrian detector in both accuracy and speed. A comprehensive set of experiments on two of the largest pedestrian detection datasets (i.e. CityPersons and Caltech) demonstrate the superiority of the proposed method, comparing to the state of the arts on both the benchmarks.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print