SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li S, Deng Y, Zhong W, Chen Z. Adv. Struct. Eng. 2018; 21(9): 1262-1272.

Copyright

(Copyright © 2018, SAGE Publishing)

DOI

10.1177/1369433217739707

PMID

unavailable

Abstract

To investigate the aerodynamic characteristics of stay cables attached with helical wires, a series of wind tunnel tests and computational fluid dynamics simulations were both carried out on the smooth and helical-wire cable models. The diameters of helical wires include 2, 3, and 4 mm, and the distances between adjacent helical wires include 200, 300, and 600 mm. Pressure taps were uniformly arranged on seven cross sections of the cable models. First, wind tunnel tests including 50 test cases were conducted to measure the wind forces and wind pressures on the cables using the forced vibration system in HD-2 wind tunnel. The effects of the helical wires on the mean and fluctuating aerodynamic forces and the correlation coefficients along the cable axis were investigated in detail based on the experimental data. Second, large Eddy simulation module incorporated in software FLUENT® was used to simulate the aerodynamic forces on the smooth and helical-wire cables. The parameters of the cable and the helical wire are similar to those used in the wind tunnel tests. The results show that helical wires can attenuate vortex shedding and reduce the wind pressure correlation along the cable axis. Within the Reynolds number range from 0.4 × 105 to 1.6 × 105, the mean drag force of the helical-wire cable is lower than the value of the smooth cable, and the correlation coefficient decreases with the increase in wind velocity. The results obtained from wind tunnel tests and computational fluid dynamics simulations agree well with each other. Furthermore, the wind velocity contour around the helical-wire cables obtained from computational fluid dynamics simulations visually indicates that the approaching flow is forced to separate at the surface of the helical wire in advance, which makes the vortex shedding disorder along the cable axis.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print