SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Auberger R, Riener R, Russold MF, Dietl H. IEEE Int. Conf. Rehabil. Robot. 2019; 2019: 938-943.

Copyright

(Copyright © 2019, Institute of Electrical and Electronics Engineers)

DOI

10.1109/ICORR.2019.8779491

PMID

31374750

Abstract

For patients with lower limb paralysis, wearable robotic systems are becoming increasingly important for regaining mobility. The actuation of these systems is challenging because of the necessity to deliver high power within very limited space. However, not all patients need full support, as many patients have residual muscle function that can be applied for locomotion. This work introduces a microprocessor-controlled leg (hip-knee-ankle-foot) orthosis (mpLeg) with energy recuperation capabilities at the hip joint. The system redistributes motion energy generated by the patient during walking. In stance phase of walking, energy is stored in an elastic element at the hip joint. This energy can be released by computer control later in the gait phase, to support swing phase motion. This work aims at investigating the influence of the elastic element in the orthotic hip joint on a patient's motion. Experiments conducted with a patient suffering from incomplete paraplegia demonstrated that the motion pattern during walking improved with activated energy recuperation. This observation was made over a wide range of system parameters. The patient used the energy recuperation capabilities of the mpLeg with up to 4.1 J recuperated energy per step, which resulted in a more natural swing phase motion during walking. Therefore energy recuperation at the hip joint is a feasible technology for future supportive devices.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print