SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Choi WR, Yang JH, Jeong SY, Lee JK. PLoS One 2019; 14(8): e0219586.

Affiliation

Department of Orthopaedic Surgery, Hanyang University Seoul Hospital, Seongdong-gu, Seoul, Korea.

Copyright

(Copyright © 2019, Public Library of Science)

DOI

10.1371/journal.pone.0219586

PMID

31369583

Abstract

Non-contact anterior cruciate ligament (ACL) rupture is mostly caused by a pivot shift mechanism including valgus collapse and internal tibial rotation. In female athletes, the incidence of ACL rupture has been reported to be significantly higher than in their male counterparts. However, to date, there have been limited reports and controversy regarding sex differences underlying injury mechanisms of ACL and severity of injury. In this study, we hypothesized that 1) in patients with non-contact ACL rupture, the incidence and severity of pivot shift injury, which are determined by injury pattern on MRI, would be significantly higher in females, and 2) anatomical factors associated with pivot shift injury would be significantly associated with female sex. A total of 148 primary ACL ruptures (145 patients) caused by non-contact injury mechanisms were included in this study. Among them, 41 knees (41 patients) were female and 107 knees (104 patients) were male. The status of the osseous lesions, lateral and medial tibial slope, depth of the medial tibial plateau, collateral ligaments, and menisci were assessed by MRI and compared between sexes. The severity of osseous lesions at the lateral tibial plateau, lateral femoral condyle, medial tibial plateau, and medial femoral condyle were comparable between sexes. There were no significant differences between sexes in the location of tibial contusions (p = 0.21), femoral contusions (p = 0.23), or meniscus tears (p = 0.189). Lateral tibial slope was found to be significantly larger in females (8.95° vs. 6.82°; p<0.0001; odds ratio = 1.464), and medial tibial depth was significantly shallower in females (1.80mm vs. 2.41mm; p<0.0001; odds ratio = 0.145). In conclusion, females showed greater lateral tibial slope and shallower medial tibial depth compared to males, however it did not affect the sex differences in injury pattern.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print