SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Silsupadol P, Prupetkaew P, Kamnardsiri T, Lugade V. IEEE J. Biomed. Health Inform. 2019; ePub(ePub): ePub.

Copyright

(Copyright © 2019, Institute of Electrical and Electronics Engineers)

DOI

10.1109/JBHI.2019.2930091

PMID

31329138

Abstract

As turns and walking speed modulation are crucial for functional mobility, development of a field-based tool to objectively evaluate non-steady-state gait is essential. This study aimed to quantify spatiotemporal gait using three Android smartphones during steady-state walking, turns, and gait speed modulation in laboratory and free-living environments. Twenty-four adults ambulated along a 10-m walkway in both environments under seven conditions: straight walking, 90-degree left or right turn, and modulating gait speed from usual-slow, usual-fast, slow-fast, and fast-slow. Two smartphones were attached to the body, with another phone placed in a shoulder bag. Gait velocity, step time, step length, cadence, and symmetry were computed from smartphone-based tri-axial accelerometers and validated with motion capture and video, in laboratory and free-living environments, respectively. Validity was assessed using Pearson's correlation and Bland-Altman analysis. Gait velocity results revealed moderate to very high validity across all walking conditions, smartphone models, smartphone locations, and environments. Correlations for gait velocity ranged between 0.87-0.91 and 0.79-0.83 for straight walking, 0.86-0.95 and 0.86-0.89 for turning, and 0.51-0.90 and 0.67-0.89 for speed modulation trials, in laboratory and free-living environments, respectively. Step time, step length, and cadence demonstrated high to very high correlations for straight walking and turns. However, symmetry results revealed high correlations only during straight walking in the laboratory. Conditions that included slow walking showed negligible to moderate validity with a high bias. In conclusion, smartphones can be employed as field-based devices to assess steady-state walking, turning, and speed modulation across environment, model, and placement when walking faster than 0.5m/s.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print