SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Stapleton SY, Gates TJ, Avelar R, Geedipally SR, Saedi R. Transp. Res. Rec. 2019; 2673(5): 660-669.

Copyright

(Copyright © 2019, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198119840348

PMID

unavailable

Abstract

This study involved the development of safety performance functions for rural, low-volume, minor road stop-controlled intersections in Michigan. Facility types included three-leg stop-controlled (3ST) and four-leg stop-controlled (4ST) intersections under state or county jurisdiction and were sampled from each of Michigan's 83 counties. To isolate lower-volume rural intersections, major roadway traffic volumes were limited to the range of 400-2,000 vehicles per day (vpd). Data were compiled from several sources for 2,023 intersections statewide. These data included traffic crashes, volumes, roadway classification, geometry, cross-sectional features, and other site characteristics covering the period of 2011-2015. Random effects negative binomial regression models were specified for each stop-controlled intersection type considering factors such as driveway density, lighting presence, turn lane presence, and intersection skew, in addition to volume. To account for the unobserved heterogeneity between counties, mixed effects negative binomial models with a county-specific random effect were utilized. Furthermore, unobserved temporal effects were controlled through the use of a year-specific random effect. Separate models were developed for fatal/injury crashes, property damage crashes, and select target crash types. The analysis found that skew angles of greater than five degrees led to significantly greater crash occurrence for both 3ST and 4ST intersections, while greater than two driveways near the intersection led to significantly greater angle crashes at 4ST intersections. Other factors were found to have little impact on crash occurrence. Comparison with the Highway Safety Manual (HSM) base models showed that the HSM models over-predict crashes on 4ST intersections and 3ST intersections with volumes between 1,200 and 2,000 vpd.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print