SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Virdi N, Grzybowska H, Waller ST, Dixit V. Accid. Anal. Prev. 2019; 131: 95-111.

Affiliation

Research Centre for Integrated Transport Innovation, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW 2052, Australia; Academic in Residence IAG. Electronic address: v.dixit@unsw.edu.au.

Copyright

(Copyright © 2019, Elsevier Publishing)

DOI

10.1016/j.aap.2019.06.001

PMID

31233998

Abstract

The transportation network can provide additional utility by addressing the safety concerns on roads. On-road fatalities are an unfortunate loss of life and lead to significant costs for society and the economy. Connected and Autonomous Vehicles (CAVs), envisaged as operating with idealised safety and cooperation, could be a means of mitigating these costs. This paper intends to provide insights into the safety improvements to be attained by incrementally transitioning the fleet to CAVs. This investigation is done by constructing a calibrated microsimulation environment in Vissim and deploying the custom developed Virdi CAV Control Protocol (VCCP) algorithm for CAV behaviour. The CAV behaviour is implemented using an application programming interface and a dynamic linking library. CAVs are introduced to the environment in 10% increments, and safety performance is assessed using the Surrogate Safety Assessment Module (SSAM). The results of this study show that CAVs at low penetrations result in an increase in conflicts at signalised intersections but a decrease at priority-controlled intersections. The initial 20% penetration of CAVs is accompanied by a +22%, -87%, -62% and +33% change in conflicts at the signalised, priority, roundabout and DDI intersection respectively. CAVs at high penetrations indicate a global reduction in conflicts. A 90% CAV penetration is accompanied by a -48%, -100%, -98% and -81% change in conflicts at the signalised, priority, roundabout and DDI intersection respectively.

Copyright © 2019 Elsevier Ltd. All rights reserved.


Language: en

Keywords

Connected and Autonomous Vehicles; Microsimulation; SSAM; Safety; Surrogate Safety Assessment Module

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print