SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Davoudi Kakhki F, Freeman SA, Mosher GA. Safety Sci. 2019; 117: 257-262.

Copyright

(Copyright © 2019, Elsevier Publishing)

DOI

10.1016/j.ssci.2019.04.026

PMID

unavailable

Abstract

Although machine learning methods have been used as an outcome prediction tool in many fields, their utilization in predicting incident outcome in occupational safety is relatively new. This study tests the performance of machine learning techniques in modeling and predicting occupational incidents severity with respect to accessible information of injured workers in agribusiness industries using workers' compensation claims. More than 33,000 incidents within agribusiness industries in the Midwest of the United States for 2008-2016 were analyzed. The total cost of incidents was extracted and classified from workers' compensation claims. Supervised machine learning algorithms for classification (support vector machines with linear, quadratic, and RBF kernels, Boosted Trees, and Naïve Bayes) were applied. The models can predict injury severity classification based on injured body part, body group, nature of injury, nature group, cause of injury, cause group, and age and tenure of injured workers with the accuracy rate of 92-98%. The results emphasize the significance of quantitative analysis of empirical injury data in safety science, and contribute to enhanced understanding of injury patterns using predictive modeling along with safety experts' perspectives with regulatory or managerial viewpoints. The predictive models obtained from this study can be used to augment the experience of safety professionals in agribusiness industries to improve safety intervention efforts.


Language: en

Keywords

Injury severity classification; Injury severity prediction; Machine learning

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print