SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wee J, Choi JG, Pak W. Sensors (Basel) 2019; 19(11): s19112563.

Affiliation

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea. wooguilpak@yu.ac.kr.

Copyright

(Copyright © 2019, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s19112563

PMID

31195635

Abstract

Vehicle-to-Everything (V2X) requires high-speed communication and high-level security. However, as the number of connected devices increases exponentially, communication networks are suffering from huge traffic and various security issues. It is well known that performance and security of network equipment significantly depends on the packet classification algorithm because it is one of the most fundamental packet processing functions. Thus, the algorithm should run fast even with the huge set of packet processing rules. Unfortunately, previous packet classification algorithms have focused on the processing speed only, failing to be scalable with the rule-set size. In this paper, we propose a new packet classification approach balancing classification speed and scalability. It can be applied to most decision tree-based packet classification algorithms such as HyperCuts and EffiCuts. It determines partitioning fields considering the rule duplication explicitly, which makes the algorithm memory-effective. In addition, the proposed approach reduces the decision tree size substantially with the minimal sacrifice of classification performance. As a result, we can attain high-speed packet classification and scalability simultaneously, which is very essential for latest services such as V2X and Internet-of-Things (IoT).


Language: en

Keywords

high scalability; high-speed communication; network security; packet classification

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print