SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

O'Keeffe KP, Anjomshoaa A, Strogatz SH, Santi P, Ratti C. Proc. Natl. Acad. Sci. U. S. A. 2019; 116(26): 12752-12757.

Affiliation

Senseable City Lab, Massachusetts Institute of Technology, Cambridge, MA 02139.

Copyright

(Copyright © 2019, National Academy of Sciences)

DOI

10.1073/pnas.1821667116

PMID

31186354

Abstract

Sensors can measure air quality, traffic congestion, and other aspects of urban environments. The fine-grained diagnostic information they provide could help urban managers to monitor a city's health. Recently, a "drive-by" paradigm has been proposed in which sensors are deployed on third-party vehicles, enabling wide coverage at low cost. Research on drive-by sensing has mostly focused on sensor engineering, but a key question remains unexplored: How many vehicles would be required to adequately scan a city? Here, we address this question by analyzing the sensing power of a taxi fleet. Taxis, being numerous in cities, are natural hosts for the sensors. Using a ball-in-bin model in tandem with a simple model of taxi movements, we analytically determine the fraction of a city's street network sensed by a fleet of taxis during a day. Our results agree with taxi data obtained from nine major cities and reveal that a remarkably small number of taxis can scan a large number of streets. This finding appears to be universal, indicating its applicability to cities beyond those analyzed here. Moreover, because taxis' motion combines randomness and regularity (passengers' destinations being random, but the routes to them being deterministic), the spreading properties of taxi fleets are unusual; in stark contrast to random walks, the stationary densities of our taxi model obey Zipf's law, consistent with empirical taxi data. Our results have direct utility for town councilors, smart-city designers, and other urban decision makers.


Language: en

Keywords

city science; mobile sensing; urban monitoring; urban sustainability

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print