SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dubois A, Mouthon A, Sivagnanaselvam RS, Bresciani JP. J. Neuroengineering Rehabil. 2019; 16(1): e71.

Affiliation

Grenoble Alpes University, CNRS, LPNC UMR 5105, Grenoble, F-38000, France.

Copyright

(Copyright © 2019, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/s12984-019-0532-x

PMID

31186002

Abstract

BACKGROUND: Falls in the elderly constitute a major health issue associated to population ageing. Current clinical tests evaluating fall risk mostly consist in assessing balance abilities. The devices used for these tests can be expensive or inconvenient to set up. We investigated whether, how and to which extent fall risk could be assessed using a low cost ambient sensor to monitor balance tasks.

METHOD: Eighty four participants, forty of which were 65 or older, performed eight simple balance tasks in front of a Microsoft Kinect sensor. Custom-made algorithms coupled to the Kinect sensor were used to automatically extract body configuration parameters such as body centroid and dispersion. Participants were then classified in two groups using a clustering method. The clusters were formed based on the parameters measured by the sensor for each balance task. For each participant, fall risk was independently assessed using known risk factors as age and average physical activity, as well as the participant's performance on the Timed Up and Go clinical test.

RESULTS: Standing with a normal stance and the eyes closed on a foam pad, and standing with a narrow stance and the eyes closed on regular ground were the two balance tasks for which the classification's outcome best matched fall risk as assessed by the three known risk factors. Standing on a foam pad with eyes closed was the task driving to the most robust results.

CONCLUSION: Our method constitutes a simple, fast, and reliable way to assess fall risk more often with elderly people. Importantly, this method requires very little space, time and equipment, so that it could be easily and frequently used by a large number of health professionals, and in particular by family physicians. Therefore, we believe that the use of this method would substantially contribute to improve fall prevention. TRIAL REGISTRATION: CER-VD 2015-00035. Registered 7 December 2015.


Language: en

Keywords

Balance analysis; Depth camera; Elderly people; Fall prevention

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print