SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Song YM, Qian Y, Su WQ, Liu XH, Huang JH, Gong ZT, Luo HL, Gao C, Jiang RC. Neural Regen. Res. 2019; 14(10): 1796-1804.

Affiliation

Department of Neurosurgery, General Hospital, Tianjin Medical University; Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China.

Copyright

(Copyright © 2019, Neural Regeneration Research, Shenyang, Liaoning Province, P.R. China, Publisher Wolters Kluwer)

DOI

10.4103/1673-5374.257534

PMID

31169198

Abstract

The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans, while severe controlled cortical impact can produce a severe traumatic brain injury model using precise strike parameters. In this study, we compare the pathological mechanisms and pathological changes between two rat severe brain injury models to identify the similarities and differences. The severe controlled cortical impact model was produced by an electronic controlled cortical impact device, while the severe free weight drop model was produced by dropping a 500 g free weight from a height of 1.8 m through a plastic tube. Body temperature and mortality were recorded, and neurological deficits were assessed with the modified neurological severity score. Brain edema and blood-brain barrier damage were evaluated by assessing brain water content and Evans blue extravasation. In addition, a cytokine array kit was used to detect inflammatory cytokines. Neuronal apoptosis in the brain and brainstem was quantified by immunofluorescence staining. Both the severe controlled cortical impact and severe free weight drop models exhibited significant neurological impairments and body temperature fluctuations. More severe motor dysfunction was observed in the severe controlled cortical impact model, while more severe cognitive dysfunction was observed in the severe free weight drop model. Brain edema, inflammatory cytokine changes and cortical neuronal apoptosis were more substantial and blood-brain barrier damage was more focal in the severe controlled cortical impact group compared with the severe free weight drop group. The severe free weight drop model presented with more significant apoptosis in the brainstem and diffused blood-brain barrier damage, with higher mortality and lower repeatability compared with the severe controlled cortical impact group. Severe brainstem damage was not found in the severe controlled cortical impact model. These results indicate that the severe controlled cortical impact model is relatively more stable, more reproducible, and shows obvious cerebral pathological changes at an earlier stage. Therefore, the severe controlled cortical impact model is likely more suitable for studies on severe focal traumatic brain injury, while the severe free weight drop model may be more apt for studies on diffuse axonal injury. All experimental procedures were approved by the Ethics Committee of Animal Experiments of Tianjin Medical University, China (approval No. IRB2012-028-02) in February 2012.


Language: en

Keywords

animal model comparison; blood-brain barrier damage; brainstem injury; controlled cortical impact; diffuse axonal injury; free weight drop; nerve regeneration; neural regeneration; neuroinflammation; neurological impairment; neuronal apoptosis; severe traumatic brain injury

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print