SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Nsengiyumva JB, Luo G, Amanambu AC, Mind'je R, Habiyaremye G, Karamage F, Ochege FU, Mupenzi C. Sci. Total Environ. 2019; 659: 1457-1472.

Affiliation

Faculty of Environmental Studies, University of Lay Adventists of Kigali (UNILAK), P.O. Box 6392, Kigali, Rwanda.

Copyright

(Copyright © 2019, Elsevier Publishing)

DOI

10.1016/j.scitotenv.2018.12.248

PMID

31096356

Abstract

Application of suitable methods to generate landslide susceptibility maps (LSM) can play a key role in risk management. Rwanda, located in centre-eastern Africa experiences frequent and intense landslides which cause substantial impacts. The main aim of the current study was to effectively generate susceptibility maps through exploring and comparing different statistical and probabilistic models. These included weights of evidence (WoE), logistic regression (LR), frequency ratio (FR) and statistical index (SI). Experiments were conducted in Rwanda as a study area. Past landslide locations have been identified through extensive field surveys and historical records. Totally, 692 landslide points were collected and prepared to produce the inventory map. This was applied to calibrate and validate the models. Fourteen maps of conditioning factors were produced for landslide susceptibility modeling, namely: elevation, slope degree, topographic wetness index (TWI), curvature, aspect, distance from rivers and streams, distance to main roads, lithology, soil texture, soil depth, topographic factor (LS), land use/land cover (LULC), precipitation and normalized difference vegetation index (NDVI). Thus, the produced susceptibility maps were validated using the receiver operating characteristic curves (ROC/AUC). The findings from this study disclosed that prediction rates were 92.7%, 86.9%, 81.2% and 79.5% respectively for WoE, FR, LR and SI models. The WoE achieved the highest AUC value (92.7%) while the SI produced a lowest AUC value (79.5%). Additionally, 20.42% of Rwanda (5048.07 km2) was modeled as highly susceptible to landslides with the western part the highly susceptible comparing to other parts of the country. Conclusively, the comparison of produced maps revealed that all applied models are promising approaches for landslide susceptibility studying in Rwanda. The results of the present study may be useful for landslide risk mitigation in the study area and in other areas with similar terrain and geomorphological conditions. More studies should be performed to include other important conditioning factors that exacerbate increases in susceptibility especially anthropogenic factors.

Copyright © 2018. Published by Elsevier B.V.


Language: en

Keywords

Frequency ratio; Landslide; Logistic regression; Rwanda; Statistical index; Susceptibility

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print